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Stability of the Fermi scale from the KAM theorem 

Ervin Goldfain 

Abstract 

We have shown over recent years that the dynamics of quantum fields is likely to slide outside equilibrium 

above the Fermi scale of electroweak interactions. In proximity to this scale, spacetime dimensionality flows 

with the probing energy and leads to the concept of minimal fractal manifold (MFM). The goal of this brief 

report is to combine the MFM conjecture with the transition to chaos in nearly-integrable Hamiltonian 

systems. In doing so, we find that the KAM theorem can conceivably explain the stability of the Fermi scale 

in the low TeV sector. 
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The key property underlying the minimal fractal manifold (MFM) is a continuous and 

vanishingly small deviation from four spacetime dimensions  4 1D= −   [1]. This 

deviation may be configured as a large multivariable set that runs with the dimensionless 

energy scale   as in [2] 

 ( )f =  ,  1 2( , ,..., )N   = ,  1N     (1) 

A remarkable attribute of smooth phase-space trajectories is that they can be represented 

as groups of continuous transformations. As a result, the flow equations 
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are equivalent to the group of transformations 
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 1 0 2 0 0 0( ) ( ( ), ( ),...., ( ), , )i i Nf q        =   (3) 

in which q  is the order parameter associated with the multifractal description of (1). 

Introducing the notation 
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enables a one-to-one mapping of the MFM to the pair of canonically conjugate variables 

of classical mechanics viz. [3] 

 ( ( ), ( )) ( ( ), ( ))Q t P t       (5) 

Alternatively, using the link between   and the ( )f   spectrum [4],  (5) may be cast in the 

equivalent representation 

 ( ( ), ( )) ( ( ), ( ))Q t P t       (6) 
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Assuming that (5) and (6) form a Hamiltonian system of classical oscillators, the 

equations describing their dynamics are given by 
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with the corresponding action defined by the contour integral  
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Consider next the case of a pair of harmonic uncoupled oscillators. It represents a two-

degree-of-freedom integrable system with Hamiltonian  

 2 2 2 2 2 2

1 2 1 1 2 2

1
( )

2
H      = + + +   (10) 

Introducing the action-angle variables ( , )k kI  , 1,2k =  

 1 2(2 ) cos ( )k k k kI  =   (11a) 

 1 2(2 ) sin ( )k k k kI  =   (11b) 

turns (10) into 

 1 1 2 2H I I = +   (12) 

where  

 ,0k k k   = +   (13) 

The equations of motion read 
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A basic theorem of topology states that the phase-space orbits of this system lie on a two-

dimensional invariant torus having constant radii kI . A discrete version of (10)-(14) based 

on difference equations is the linear circle map [5] 

 1n nI I+ =   (15a) 

 1 2n n  + = +   (15b) 

where 1,2,...n =  denotes the number of iterated periods of rotation in the longitudinal 

cross-section of the torus and the winding number   represents the frequency ratio 

1 2  .  The motion is either stable-periodic or stable-quasiperiodic depending on 

whether   is either a rational or an irrational number. In the former case, the intersection 

of the orbit with a plane transverse to the torus (the Poincaré section) consists of a finite 

set of points. By contrast, in the latter case, the intersection is a dense point set whose 

closure is a circle as n→. Liouville’s theorem states that (15) is an area preserving map 

in the ( ,n nI  ) plane defined by the unitary Jacobian 
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  (16) 

Analysis shows that the onset of chaos in a Hamiltonian system of the type (12) and (15) 

amounts to a breakdown of invariant tori due to perturbations. Specifically, the KAM 

theorem describes the progressive disintegration of invariant tori, a process referred to as 

Hamiltonian or soft chaos [6]. The cross-section portrait of soft chaos is smooth if the tori 

are intact but is gradually filled with irregular regions associated with phase-locking, 

which occurs when   is closely approximated by a rational number. 
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To highlight the main point of the KAM theorem, consider a perturbation of (15) 

presented in the form [5] 

 1 1( , )n n n nI I f I + += +   (17a) 

 1 1 12 ( ) ( , )n n n n nI g I    + + += + +   (17b) 

Here, the additional terms account for the perturbation effects and, under certain 

conditions, turn (15) into a nearly-integrable or non-integrable system. KAM theorem is  

based on evaluating the generic irrational winding number   by a sequence of rational 

approximations ( v )j ju  1,2,..., ,...j n=  as in   

  1 1 2 2v , v ,..., v ,...n nu u u →   (18) 

If, as 0 →  and n→, the following condition is satisfied  

 
5 2
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 −    (19) 

then the orbit with irrational number   survives as a stable quasi-periodic orbit under 

the perturbation. The factor ( )K  is a positive constant dependent on the perturbation 

strength  . KAM theorem shows that the eventual decay of tori occurs in successive 

phases: new pairs of stable-periodic orbits emerge as older stable periodic orbits vanish 

via period-doubling bifurcations. An important outcome of the theorem is that the most 

resilient torus to perturbations is the one characterized by golden-mean winding number 
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The often-cited reason for this outcome is that rational approximations to (20) are the 

most slowly convergent of all algorithmically computable winding numbers [5]. 

In summary, considering the wide range of connections between the MFM and the 

Standard Model of particle physics, it is conceivable that (19) can justify the stability of 

the Fermi scale in the low TeV sector. To this end, it is instructive to numerically evaluate 

the winding number and the condition (19) under the following couple of reasonable 

hypotheses:  

a) the primary frequency 1  of (12) reflects the cosmic microwave temperature 

fluctuations induced by variations of matter density in the early Universe. This 

hypothesis is motivated by the maximal observable dimensional deviation 

5

max (10 )O −=  obtained by fitting the black-body CMB spectrum [7]. 

b) the secondary frequency 2  of (12) reflects the temporal variations of the Hubble 

parameter as the Universe expands and cools off.   

Results of this analysis are planned to be reported elsewhere.   
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